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I. PROGRESS OF W O R K  (March through June)* 

The manuscript 'h-eliminary Report on Detection of Electrostatic Ion 

Waves i n  the Magnetosphere" has been accepted for  publication i n  the Journal 

of Geophysical Research ( to  appear July 1, 1965) and the Research Note 

"Direct Detection of Ambient Electron Plasma Oscillation Fields in  the 

Magnetosphere" w i l l  appear i n  J. Plaqetary and Space Science. The abstract 

"Large Amplitude Electrostatic Waves above the kncqhere and Effects on the 

Plasma Sheath" w i l l  not be presented a t  the AFCRL Symposium (see Status Report 

No. 7) because the main in t e re s t  a t  t h e  Symposium involves lower a l t i tude  

effects.  

During t h i s  period Dr .  Fredricks attended the Spring American Geophysical 

Union meeting and delivered the two talks noted in  Report No. 7. 

scr ipts  "Effects of Solar Wind Composition on the Threshold for  Plasma 

Instabi l i ty  i n  the Transition Region" (Appendix A) and "Production of 

Superthermal Electrons by Electrostatic Plasma Oscillations 'I (Appendix B) 

were completed; t h e  first has been submitted t o  Journal of Geophysical Research, 

and a revised version of the second w i l l  be submitted t o  Physics of Fluids. 

On April 23, D r ,  Scarf and Mr. Crook gave a presentation a t  NASA Head- 

The manu- 

quarters on the proposal t o  detect plasma oscil lations on OGO E, and work 

* A new contract (mASw-1226) which w i l l  extend t h i s  work has recently been 
negotiated and the final report for ~ S W - 6 9 8  is a lso  a progress report for  
continuing research in  t h i s  area. 
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has continued on P-11 data reduction. A comprehensive account of these 

findings is being prepared. 

11. KEY PERSONNEL 

During this period F, L .  Scarf, R.  

A .  Peskoff worked on t h i s  problem. 

111. NEW c m m  

None 

IV. SUMMARY OF WORK, ms w - 698. 

. Fredricks, S.  A shuler, an1 1 

Published Articles Generated under NASw-698: 

1. A Model for a Broad Disordered Transition between the Solar Wind and 
the  Magnetosphere, W. Bernstein, R. W. Fredricka and F. L .  
Scarf, J.G.R. - 69, 1201 (1964). 

2. Electron Acceleration and Plasma Ins tab i l i t i es  i n  the Transition 
Region, F, L. Scarf, W. Bernstein and R. W .  Fredricks, 
J.G.R. _I 70, 9 (1965). 

3. Numerical Es t imates  of Superthermal Electron Production by Ion Acoustic 
Waves i n  the Transition Region, R.  W.  Fredricks, F. L. Scarf 
and W. Bernstein, J.G.R. 70, 2 l  (1965). 

4. Conductive Heating of the Solar Wind, 11. The Inner Corona, F. L.  
Scarf and L.  Noble, Ap. J., May 15, 1965. 

5. Preliminary Report on the Detection of Electrostat ic  Ion Waves i n  the 
Magnetosphere, F. L .  Scarf, G. M. Crook and R. W. Fredricks, 
J.G.R. - 70, July 1, 1965. 

Magnetosphere, F. L .  Scarf and R.  W. Fredricks, J. Plan. Sp. Sci. ,  
i n  press. 

6. Direct Detection of Ambient Electron Plasma Oscillation Fields i n  the 



1 . 

7. On the Role of Ion Acoustic Waves i n  the Transition Region, F. L.  Scarf, 
i n  The S o l a r  Wind, Ed. R.  hhckin, Jr., Pergamon Press, i n  press. 

8. Effects of Solar Wind Composition on the Threshold for  Plasma Ins tab i l i ty  
i n  the Transition Region, R. W. Fredricks and F. L. Scarf, sub- 
mit ted t o  J.G.R. (see Appendix A ) .  

9. Production of Superthemal Electrons by Electrostatic Plasma Oscillations, 
R W.  Fredricks, revised version t o  be submitted t o  Phys Fluids 
(see Appendix B) 

Published Abstracts Generated under WSw-698: 

1. Plasma Inetabi l i t ies  i n  the Magnetopause, F. L. Scarf, W.  Bernstein and 
R. W. Fredricks, Tram. A.G.U. 44, 880 (1963). 

L.  Noble, Trans. A.G.U. 45, 78 (1964). 

- 
2. Transport Phenomena i n  the Solar Corona and Solar Wind, F. L. Scarf and 

- 
3. A Possible Interpretation of the P-11 VLF Measurements, F. L. Scarf and 

R.  W .  Fredricks, Tram. A.G.U. 45, 598 (1964). - 
4. Superthermal Electron Production i n  the Transition Region, R. W. Fredricks, 

F. L. Scarf and W. Bernstein, Trans.  A.G.U. 630 (1964). 

5 .  Further Analysis of VLF Electric Field Measurements above the Ionosphere, 
F. L. Scarf, G. M. Crook and R. W. Fredricks, Tram. A.G.U. 46 -3 
114 (1965). 

6. Conditions for  Ion Wave Instabi l i ty  i n  the T r a n s i t i o n  Region using 
E x p e r b e n t a l  Velocity Distribution Functions, R. W Fredricks, 
F. L .  Scarf and W. Bernstein, Trans.  A.G.U. 46, 114 (1965). - 

Publications Supported P a h i a l l y  by NASW-698: 

1. Whistler T)etemimtion of Electron Energy and Density Distributions i n  
the Magnetosphere, H. B. Liemohn and F. L. Scarf, J.G.R. 9, 
1201 (1964). 

2. Dyhemics of the Solar Wind, F. L. Scarf and L. Noble, AlCAA J o d  s, 
1158 (1964) 

3. The Solar Wind and Its Interaction with Magnetic Fields, F. L. Scarf i n  
Space Physics, Ed. D. LeGalley and A. Rosen, Wiley, 1964, p. 437. 
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4. The Origin of the Solar Wind, F. L. Scarf l n  The Solar Wind, Ed. R .  Mackin, 
Jr., Pergamon Press, in press. 

Miscellaneous 

Theoretical Interpretation of Bow Shock Measurements, F. L. Scarf, 
invited talk at NASA/Ames - Stanford University 
Collisionless Shock, March 1-3, 1965 -- no published abstract. 

1. 
Conference on the 

2. Seminar talks a t  USC, Cal. Tech., JPL, Lo8 Alamos, Stanford University, 
Aerospace Corp ., mASA/Amea . 
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EFFECTS OF SOIAR W I N D  COMPOSITION ON THE THRESHOLD 

FOR PLASMA INSTABILITY I N  THE TRANSITION REGION 

R. W. Fredricks and F. L. Scarf 
TRW Space Technology Iaboratories, Redondo Beach, California 

2 7 7 7 6  
The effect of a small concentration of solar wind alpha 

particles on the conditions for drift instability in the 

transition region is investigated. It is shown that for 

alpha particle concentrations less than about 20 percent, 

the proton-electron threshold curve is sufficiently accurate, 

for the range of relative electron-proton-alpha particle drift 

speeds of interest. Recent transition region plasna measure- 

i ments are interpreted in terms of the conditions for marginal 

stability with respect to electrostatic plasma oscillations. / 

-i- 



Appendix A 

I. INTRODUCTION 

In a recent series of papers (Bernstein, et .al., 1964; Scarf, et .al., 

1965; Fredricks, et .al., l965), the consequences of the possible existence 

of double-stream plasma instabilities in the transition region separating 

the ordered geomagnetosphere and the unperturbed solar wind were explored. 

In particular the lower frequency, or ion acoustic wave, branch of the 

double-stream plasma instability was invoked as a probable explanation for 

some of the phenomena observed experimentally by spacecraft instruments 

traversing the transition region (superthermal electrons, broad dis- 

ordering of the transition, etc.). 

Recent data from electrostatic analyzers aboard spacecraft (VELA, 

OGO-A, IM€'-B) penetrating the transition region seem to indicate that 

the proton flues are significantly anisotropic in angular distribution, 

retaining much of their streaming energy (Wolfe and Silva, 1964; Wolfe, 

et.al., 1965; Strong, et.al., 1964, 1965; M e ,  et.al., 1964, 1965) while 

electrons generally have isotropic angular distributions (Bame, et .al., 

1965). The proton energy spectra often appear to have non-maxwellian 

tails while the portions near the meam drift energy fit a maxwellian 

reasonably well. 

weilian, fitting distributions for kinetic temperature from several 

hundred eV to more than one keV, but with small non-msxwellian high energy 

tails. 

The electron energy spectra are generally more max- 

These recent data also indicate the presence in the solar wind of 

a highly variable alpha-particle content. Wolfe, et .al., (1964, 1965) 
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quote a range of alpha-particle to proton density in the range of zero 

to perhaps eight or ten percent, while' M e ,  et.al. (1964, 1965) have 

tentatively 

M~riner-2 electrostatic analyzer could not determine this ratio with pre- 

cision. ) 

rays) to about 16 percent (solar system abundance), while no direct solar 

abundance is available (Aller, 1961). 

estimated a range of zero to perhaps twenty percent. (The 

The abundance ratios He/H reported are between 8 percent (cosmic 

The critical drift velocity for marginal stability of the ion 

acoustic wave was previously calculated as a function of the electron/ 

proton temperature ratfo by Jackson (1960) and Fried and Gould (1961), 

and presented graphically by Bernstein, et.al., (1964); the curve is 

shown in Fig. 1. 

assumptions that the gas (1) is fully ionized, ( 2 )  is collisionless, 

( 3 )  is comprised of only electrons and protons of equal number densities, 

(4) can be characterized by maxwellian electron and proton velocity d i s -  

tributions of kinetic temperatures Te and T where Te = T  

partial density of alpha particles was excluded from these previous 

calculations. 

This mrginal stability curve was computed under the 

Hence, any 
P P 

In the present paper, we investigate the effect on the marginal 

stability curve (critical drift velocity vs . electron/ion temperature 
ratio) of small alpha particle/proton density ratios, and attempt to 

relate the results to data from electrostatic analyzers on spacecraft in 

the interplanetary and transition regions. 

basis of such recent Spacecraft plasma data, the alpha particle content of 

It will be shown that, on the 

- 2 -  
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the solar wind can be expected to have a negligible effect on the condl- 

tions for the ion wave instabilities to occur, and that the previous 

marginal stability criteria (Bernstein, et .al., 1964) remain applicable 

to the transition region. 

11. PLASMA DISPERSION RELATION 

The dispersion relation governing small amplitude longitudinal waves 

in a homogeneous isotropic plasma having several component ion species I s  

(Stix, 1962) for maxwellian distributions 

where Z ' (# )  = a Z / a  #, and Z ( 5  

defined and tabulated by fried and Conte (1961) 

- w ) is the plasma dispersion f'unction 3 

In (1) and (2), the symbols have the following meanings 5 = o/kaJ, 
1 3 

= v /a , a = (2K T /m )'. w and k are the angular frequency and wave w3 3 3  j 3 3  
number of the plasma wave, 

species relative to a fixed laboratory frame, a, is the thermal velocity 

is the bulk (drift) velocity of the Jkh ion 

J 
th of the j species of mass m and kinetic temperature T The quantity 3 3 .  

K. is Boltzmann's constant, n is the number density and q the charge 
3 3 

number of the jth species. 

- 3 -  
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Bernstein and Kulsrud (1960) have shown that the dispersion relation 

(1) can be appropriate to ion acoustic waves even in the presence of a 

magnetic field. The conditions for the validity of (1) in a magnetic 
1 field are given by <v 2 5  > <<c, w / \ k ( ~ <  c and k1<v2)'/w L < 1, where 

C < v2 > is the mean squared thermal speed, c the velocity of light, &the 
wave number of the perturbation, wC = eBo/mc is the cyclotron frequency 

and k L  is the projection of k perpendicular to the magnetostatic field 
B . 
waves in the transition region. 

* 

A l l  of these conditions appear to be readily satisfied by ion acoustic 
-0 

The function defined by the Hilbert transform of the gaussian, EQ. 

(z) ,  is a complex function of a generally complex argument, since for 

real k, the frequency 03 can be complex. 

w to k, and thus defines the allowed spectrum of plasma oscillations. 

damped or growing waves, of the type 

Equation (1) relates this complex 

For 

one solves (1) for w = w 

parameters to obtain the oscillation frequency ur and damping or growth 

constant 3 . This in general requires a numerical method, since (1) 
is a complex higher transcendental equation. 

ix at fixed values of k and the other r 

The case of marginal stability of such waves is represented by the 

solutions 

malized drift velocities v /a 

1 (k) E 0 which are associated with the lowest possible nor- 

They are examined by studying the . 
j s =wj 

- 4 -  
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(graphical) solutions to (1) when 3 - w are real, as will be exemplified 

in our subsequent calculations- For most of the cases of practical interest, 

the minimum normalized drift velocities w will be associated with the very 

long wavelength modes k+ 0, and it will be these modes that we shall 

examine in solving (1) for 3 = 0. hrginal stability thus represents 

the boundary between growing and damped wave solutions to Eq. (1). 

J J  

J 

111. APPROXIMATE ANALYTICAL SO'IUTIONS FOR MARGINAL STABILITY 

Let us assume a gas of protons, alpha particles and electrons. 

Charge neutrality in a non-oscillatory state requires that ne = n + 2na. 

If we define the electron Debye length h ,  = (K T /4nn e')', the tempera- 

ture ratios 0 = T /T and 0a = Te/Td the variable 'p = cu/kae, and the 

parameters 5 = (Q,/b )z, \ =  2 ( e $ 6  )', where 6 = me/m is the 

electron/proton mass ratio (6 = 1/1836), along with the density ratio 

r = ndnp, the dispersion relation in the ion rest frame can be written 

P 

e e 

P e P l  

P 

2k2ht = 2 ' ( 4  - we) + 0 2'1'5 5)/(l  + 2r) + 4reaZ'(Y' )/( 1 + 2r) , P 6 
where we assume w = 

The case of no 

P 

(3) 

w = o , w  > o .  a e 

alpha particles (r = 0 in Eq. (3)) has been treated 

by Jackson (1960) and Fried and Gould (1961). 

cal) velocity w = v /a ys. 0 = T /T Z1 is shown in Fig. 1. We shall 

therefore ignore this case, and pass to those for which r > 0. 
limiting cases can be examined analytically rather easily, in order to 

ascertain roughlythe effect of small alpha particle concentrations on the 

The resulting minimum (criti- 

P P P  P e P  
Some 

- 5 -  
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minimum velocity curve for the%(k) = 0, k 3  0 solutions to (3 )  

A particularly simple case is that for which Ta = 4T in ( 3 ) .  'Then P 
= 0 and ( 3 )  becomes 

where the effective temperature ratio is now 

( 5  1 = (1 + r)0 /(1 + 2r) < 8 for all 0 5 r < 00 . 
@P P P 

One can see from Eq. (5) that in the presence of alpha particles 

with Ta = 4T 

along the temperature axis, and therefore the minim d r i f t  velocity for 

marginal stability computed from (4) will exceed that for r = 0 at any 

given 0 . 
shape of the composite distribution f'unctipn FT(v) = fe(v) + fp(v) + fa(v) 

in the present case. 

the critical velocity curve (Fig. 1) is shifted to the right 
P 

This is to be expected on the basis of arguments involving the 
P 

(Section 4, b e l o w ) .  

To estimate the change in the drift velocity produced when r > 0, 
let r = 0.1. Then 

velocities is thus quite small even at @ 

with increasing 0 . 

= 0 /1.09, and the difference between the drift 
P 

= 1 (Qp = 1.09). It decreases 
P 

The general result can be stated as follows, where 
P 

we write w ( 0  ) = aewe(Qp)/a,, P P  

- 6  - 
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A second case of in te res t  i s  that i n  which T, = T 

In t h i s  case 0, = 0 = 8, while I= 2 5  

t r a c t  a quantity 0 2 ' ( 5  5 ) on the r.h.s. of Eq. (3), we obtain 

Te, r 4 < 1. 
P 

i n  Eq. ( 3 ) .  If w e  add and sub- 
P 

which i s  i n  a form appropriate t o  perform a perturbation calculation. 

For very small r, the last  term on the r.h.s. of Eq. (6) should yield a 

very small correction t o  the solution t o  (6) when r = 0. 

l e t  us consider the well-known solution t o  (6) f o r  r = 0, 0 = 1. 

shown by Fried and Gould (1961) that i n  t h i s  case, one has 

In  particular,  

It is  

which yields a c r i t i c a l  dri.ft velocity 

1 
~ ( 0  = 1, r = 0)  =(0.925)(1 + 6') . 

For 1.7r 7 0  l e t  us t r y  a solution 

7 5 - we = - 0.925 + 

5 5 = + 0.925 + E2 , i (9) 

where cl and E. 

t h a t  terms proportional t o  products of the type el , e2 , E ~ E ~ ,  E r and 

E r can be neglected. 

Eq. (6) about the points 5 - we = - 0.925 and 65 = + 0.925 yields for  8 = 1 

are real ,  small f i r s t  order quantit ies depending on r such 2 
2 2  

1 

Then to  first order, a Taylor's series expansion of  
2 

- 7 -  
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c 

Urn 2k2 h t  = Z'(- 0.925) + Z ' (+  0.925) + elZ"(- 0.925)+ eZz"(+ 0.925) 
k-0 

+ 1 2r + 2r ( 2Z1(1.85) - Z'(O.925)] . 

Now the f'unction Z'(x) for real x can be written (Fried and Conte, 

1941 ) , 

where 

It follows that Z'(x) has the symmetry properties, 

1 9 

Re Z'(x) = Re Z ' (  -x) 

Im z ' (x )  = - Im z'(-x) 

while the second derivative Z"(x) has the properties, 

Re Z"(x) = - Re Z"(-x) 
Im z"(x) = Im z"(-x) 

The real part of Z'(x) vanishes at x = ? 0.925. Hence, by use of' (13) it 

can be seen that the first two terms on the r.h.s. of Eq. (10) vanish 

identically. 

imginary p a r t s  of Eq. (10) yield two inhomogeneous algebraic equa.f;ions 

2 2  If we pass to the limit k A, +PO+, then the real and 

which determine the two unknowns el and E 

written 

These equations may be 2' 

- 8  - 
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E - E = [4r R e  ~ ' ( 1 . 8 5 ) ] / ( 1  + 2r)eRe Zti(0.g25) 

E + E = -2r[Im Z ' ( 1 . 8 5 )  - Im ~'(0.925)]/(1 + 2r)aIm Z"(0.925) 

1 2  

1 2  

(15 1 
where use was made of re la t ions (13) and (14). The function Z(x) satisfies 

the d i f fe ren t ia l  re la t ion 

z"(x)  = ( e / x )  - (2x - l/x) z'(x) , 
and the numerical coefficients i n  (15) may be obtained using the tabulatcd 

values of Z ' (x )  given by Fried and Conte (1961): 

4 R e  Z1(1.85/Re Z"(0.925) 0.880 

2 [(Im Z ' ( 1 . 8 5 )  - En Z'(O.g25)]/Im Z"(0.925) 2 1.79 . 
This yields 

7 - E = O.88r/(l + 2r) €1 2 

+ E = 1.7gr/(l + 2 r )  J 9 €1 2 

so that 
7 

€1 = - 0.455r/(l + 2r) 

Equation (9) may be solved fo r  the d r i f t  velocity we' 

- 9 -  
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1 1 1 
and, since 6' = (m /m )' = 1/42.85, we(@ = 1, r = 0) = 0.925(1 + &'), 

we finally .obtain 
e P  

we(Q = 1, r>O) = we(Q = 1, r = 0 )  + 0.424r/(1 + 2r) . (19) 

Therefore, in this case (Ta = T 

an alpha particle concentration leads to a slightly higher drift velocity 

O <  r c <  1 and v = v ) the presence of 
P' a P  

for marginal stability than that required in the case of no alpha particles, 

r = 0. 

Q = 1 holds for all Q > 1. 
drift velocity can be computed for, say, r = 0.1. They yield 

We shall show in a subsequent section that the result (19) for 

Numerical values of the shift in required 

w,(Q = 1, r--O&)- we(Q = 1, r = 0) = 0.0355, 

which yields an equivalent pro+,on drift velocity shift of 

1 

v (0 = 1, r z O . 1 ) -  v ( 0  = 1, r = 0) = 1.52a = 1.52(2KT /m )' . 
P P P P P  

A natural question to ask at this point is: what would be the 

effect on the minimum critical drift velocity for marginal stability of 

the presence of alpha particles drifting with respect to both the protons 

and electrons? To examine this case, let us work in the electron rest 

frame w = 0, and set T = T w = (I+ 

Eq. (1) then becomes 5 = cu/ka . P 
in a form analogous to Eq. ( 6 ) ,  

)wp. The convenient variable in 
e a p' a 

In this variable, Eq. (1) can be written 

- 10 - 



Appendix A 

As in the treatment of (6), let us seek solutions to ( 2 0 ) ,  for very small 

r and 8 = 1, in the form 

5 - w = - 0.925 + 
P 

2(5 - wp) - 20wp = - 1.85 + 2E4 - 2Cw 2: - 1.05 - 2oW 
P P 

(21) 

A Taylor's series expansion of (20) yields 

2k 2 2  A, -0' = Z'(0.925) + Z'(-O.gZg) + E Zl1(0.g25)+ ~~Z''(-O.925) 
3 

+ 1 2r + 2r (2Z'(-1.85 - 2Cwp) - Z'(-0.925)) . (22) 

If Eq. (13) and (14), are used again, we obtain the two equations 

4' determining E and c 3 

E - c4 = - fr/(1 + 2r) 3 

gr/(l + 2r) € 3  + €4 = 

where 

f = lCReZ'(1.85 + 2 0 w  )/HeZ"(0.925) 

g = 2{21mZ1(1.85 + 2GwP) - ImZ'(0.925)j/ImZ1'(O.925) . 
P 

(24) 

The solutions to (23) are 

These values of E and c4 yield the new drift velocity 
3 

1 1 
w = 0.925(1 +6') + 2 [(g - f)6-' - ( g  + f)]r/(l + 2r) . (26) P 

- 11 - 
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The first term on the r.h.s. of (26) is just the value of critical drift 

velocity in the case r = 0, 0 = 1. 

reduce the required drift below the value for r = 0, then the coefficient 

of r/(l + 2r) in Eq. (25) must be negative, which requires 

If drifting alpha particles are to 

1 (6 -i + l)f =(ti --z - l ) g  . 
This places a condition on the magnitude of 

Eq. (27) as a transcendental equation (or inequality) and solve it for the 

variable x = 1.85 + 26w . 
numerical values of the f'unctions appearing in (24) are used, as well as 

the value 

. Actually, we may treat 

If the equality sign in (27) is taken and the 
P 

&' = 42.85, the equation becomes 

Re Z'(x) - 1.93020 En Z'(x) = 1.34437 . 
We have solved this equation graphically, and obtain 

x = 1.850 + ~ G W  = 1.686 . C P  

Theref ore 

cr = - 0.082/wp 
C 

The magnitude of Oc can be estimated by using the value of normalized 
1 

drift velocity w = wp(O = 1, r = 0) = 0.925(1 + bT) = 40.56, and (29) 

yields q- -2.02 x If CT becomes more positive than this value, the 

effect of the alpha particle drift will be to raise the drift velocity re- 

quired for marginal stability above the value required when r = 0 ,  

from (29)  that the alpha particles can lower the drift velocity for marginal 

P 

We find 

- 12  - 
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s t a b i l i t y  only i f  they are dr i f t ing somewhat more slowly than the protons. 

However, since the perturbation calculation based on Eq. (20) cannot be 

extended t o  include large negative values of C , it is  dangerous t o  con- 

clude tha t  the c r i t i c a l  d r i f t  velocity w 

w e  make CJ very much more negative than the value -2.02 x It w i l l  

be shown i n  the next section that  when the difference between proton and 

alpha par t ic le  d r i f t  velocity i s  on the order of several proton thermal 

velocit ies,  tha t  i s  v - va = Na N22,  t he i r  e f fec ts  i n  Eq. (20) be- 

come decoupled, and that for  density r a t io s  O S r ( 0 . 2  of in te res t  t o  us 

can be continuously lowered i f  
P 

P P' 

i n  considering solar wind effects, the alpha par t ic les  have no influence 

on the  proton dr i f t  velocity required t o  produce states of marginal 

s t a b i l i t y  of ion acoustic waves. 

IV. TOTAL DISTRIBVTION FUNCTIONS AND MARGINAL STABILITY 

A double stream ins tab i l i ty  occurs i n  a plasma having a t o t a l  

pa r t i c l e  distribution function FT(V) = 1 .f .(v) only if  F (v) possesses 

several  peaks, or re lat ive maxima and minima, of the proper type. "here 
J J  T 

are conditions on the separations of the re la t ive  maxima, on the magni- 

tudes of these'maxima and the change i n  slope near the relat ive minima 

(Penrose, 1960). Consider, for  example, the composite maxwellian 

dis t r ibut ion 
2 2  -(v-va) 2 2  /aa 

1 -1 -v /ae + n a  -1 e -(v-vp) /a -1 
2 2  

P + n a  
CrU 2 F (VI = neae e 

T P P  > 

- 13 - 
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non-drifting electron distribution and drifting proton 

distributions. This function is sketched in Fig. 2 

for a case Te> > T 
va > vp. 
case that if va = v 

O<r<0.2 the alpha particles will not noticeably influence the rela- 

tionship between f (v) and f (v) which determines the instability. 

.J Td and two cases of drift: either va( v or 
P P 

It is easy to show by numerically evaluating EQ. (30) in this 

2 Na where N 2 2, then for density ratios 
? P' 

In 
e P 

this case the relative distributions in the vicinity of 

f ( v ) = n a  -1 

f (v 

P P  P P  

-1 2 2  
= n a a  a exp (--N ap /a: ) CrP 

and the ratio 
f (v )/fp(vp) = (nh,)(ap/aa) exp (-N 2 2  ap/aa 2 
a P  

becomes 

fa(vp)/fp(vp) = 2r exp( -48) < 0.4e'l6 

for T~ = T (a = 2a ), N &  2. P P  a 

v = v are 
P 

, 

I '  

-8 Since this ratio is less than or on the order of 10 , we see the 
Thus, the approxi- nearly null influence of the drifting alpha particles. 

mate treatment of (20) will not be valid for large negative 6 . 
In order to understand the influence of fa(v) on the criterion for 

instability when va2? v 

3, where we have plotted the gaussian f (v) centered at v 

consider the graphical representation in Mg. 

and the two 
P' 

P P' 
gaussians f(')(v) centered at v 2 a /2. The additions of the dashed 

a P P  + 
curves f (v) and f'(v), are the solid curves. 

bution derived by adding the small gaussian centered at v 

We note that the distri- P a 
- a /2 shifts 

P P  
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the peak of the composite curve to the l e f t ,  i.e., to v - v It also 

decreases the "apparent temperature" on the 4.h.s. of the curve, by 

steepening the slope. Since a steeper slope on this side of the com- 

posite distribution, when intersecting a non-drifting hot electron dis- 

tribution as in Fig, 2, tends to decrease stability (Penrose, 1960), the 

reason for the result ( 2 9 )  derived by perturbation of the r = 0 disper- 

sion relation can be seen. P 
will lead to increased stability by reversal of the arguments just 

presented to explain decreased stability. 

P P' 

The case in which fa(v) peaks at v = ap/2 

V. GRAPHICAL SOLUTIONS TO THE DISPERSION RELATION 

A s  was previously stated, the dispersion relation (1) is a trans- 

cendental equation containing the two variables (I) and k and many parameters 

such as densities, temperatures, masses, etc. Solutions to (1) using 

purely analytical methods appear impossible; it is therefore necessary 

to solve (1) for o and k by either numerical machine computation, or  by 

a suitable graphical technique, 

which is simple and relatively rapid if one wishes to compute the drift 

velocity vs. - temperature ratio for ion acoustic wave marginal stability. 
The technique has been used previously by Jackson (1960). 

We shall present one of the Latter methods 

Let us first put the dispersion relation into a suitable form. In 

the electron rest frame, we = 0, (1) may be written in the form 

- 15 - 



Appendix A 

where w e  study the case Ta = T 

the dispersion functions are gl = w/kae, g2 = (u/k - v )a 

For purposes of studying a specific. numerical example, let  us choose r = 0.1, 

= T Q = Te/Ti Z 1. The arguments of 
P i' 

d, = (u/k - va)/aa. P P' 

corresponding 

content i s  10 

g2. Since a a 

t o  a solar wind condition i n  which the alpha particle-to-proton 

percent, 

= a /2, the  relationship 

Also, l e t  us  rewrite @ i n  terms of the variable 
3 

P 

= 2(o/k - v )a 2lvd ap @3 P P  

applies with va = v . Since 1 + 2r = 1.2, the new function 
P 

may be defined and (31) becomes 

2 2  For the long wavelength, marginally stable modes, w e  allow k a, + 0' 
i n  (33), and obtain the two equations 

I R e  Z'(gl) = -Re G'(@2; ; 

From the symmetry properties (13) of the plasma dispersion function, 

it can be shown that (34) w i l l  be satisfied by the pair of points 

- 16 - 
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where P and P are positive real numbers. To find these points, we plot 

the trajectories of the functions Z'(g1) and G'(g2) with Idl and g2 as 
parameters. 

Fig. 4. The ordinate is Im Z'(g1) and the abscissa is Re Z'(g1). For 

g1> 0, Z'($,) lies entirely in the lower half-plane. 

g1< 0 is the =flection across the real axis). 
Fig. 4 is the r.h.s. of (34)o 

for fl < 0, it will lie also in the lower half plane. 

#, = Pl, Id2 = -P2 of the traJectories Z ( g , )  and -G1(g2) yields the 
solution to (34) for a specified value of the parameter 

1 2 

The function Z'(gl) on the complex Z'-plane is shown in 

(The function for 

Thus, the function Z1 in 

If -G1(g2) is plotted on the same scale 

The intersection 2 
1 

in (32). 

These two trajectories can be plotted with the aid of the numerical 

tables of Z'(g) for real (positive-or negative) values of #. 

We note that the function GI(#,) as defined by Eq. (32) contains 

the temperature ratio 0 = Te/Ti as a multiplicative, or scaling, factor. 

As 0 increases, the trajectory -G'(&) expands without changing shape. 

This behavior results in intersections g1 = P1 4 0, g2 = - P2 
steadily decreasing drift velocity v as 0+00. However, since the 

CX, , a 

P 
state of marginal stability is defined such that it involves the minimum 

of all possible drift velocities which reduce the damping to zero 

( 3 (k) = 0), one reaches a point #, = pl, #, = -p2 at which the k 

mode is not associated with the minimum drift velocity, but rather some 

mode k )O, i.e., k A, # 0 in (31) will yield a minimum dxift velocity 
(Jackson, 1960; Fried and Gould, 1961). This occurs for 0 2 20, and is 

* * 
0 

2 2  

of no interest to us here. 

- 17 - 
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As specific examples i n  Figs. 5, 6 and 7 the graphical intersections 

defining the solutions t o  (34) are shown for  the cases va - v 

v - v = 0, va - v = - (Q = 1 . 2 ) .  The c r i t i c a l  d r i f t  veloci t ies  for  

the case 0 = 1.2, r = 0.1 and a range of re la t ive  proton-alpha par t ic le  

d r i f t s  are sketched i n  Fig. 8. This curve was computed from the  graph- 

= + a /2, 
P P 

a 
a P  P 2 

i c a l l y  determined intersections fi1 = P1, Id2 = P2(P1,P2 > 0) using the 

formula 

w = p2 + a P /a = p2 + 4 6 . 9 4 ~ ~  , P e l  P 

and may be compared with the value w (0 = 1.2,  r = 0) = 39.07 fo r  the 

case i n  which no alpha par t ic les  are present (dashed horizontal l i n e  i n  

Fig. 8). 

P 

After a systematic study of the graphical solutions fo r  a wide range 

of temperature r a t io s  0 and relative proton-alpha par t ic le  dr i f t  speeds 

(wp - wa), one concludes that  when the alpha par t ic le  Concentration i s  i n  

the  range 0 t o  20 percent, there w i l l  be l i t t l e  difference from the mini- 

mum c r i t i c a l  drift velocity for  marginal ion acoustic wave s t ab i l i t y  a s  

plot ted i n  Fig. 1. Whatever difference occurs i n  t h i s  curve due t o  alpha 

pa r t i c l e  content and re la t ive  dr i f t  is almost certain t o  be negligible 

when compared with perturbing effects from ion density gradients, possible 

anisotropies i n  the plasma, magnetic f ie ld  gradients, e tc .  

VI. DISCUSSION 

To the extent that the particle distribution functions are mxwellian 

and that the ion osci l la t ion wave numbers sa t i s fy  the cri terion, kLa/uc 4< 1, 

- 18 - 
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etc., it has been shown that the threshold curve of Fig. 1 should be 

applicable in the transition region for r 4 (1. 

analyzer measurements on Vela 2A, Vela ZB, NO-A,  IMP-B suggest that a 

The recent electrostatic 

distinct intermediate state with warm, streaming protons and hot electrons 

does indeed form in the transition region, and it is tempting to interpret 

this as a state of marginal stability with respect to electrostatic plasma 

oscillations. 

In the outer transition region the proton analyzers typically detect 

either the cool, highly streaming protons associated with the solar wind 

300-700 km/sec, K Tp (O) 2 10-30 ev), or a somewhat hotter and 
(vP 
slower proton stream (v' 

non-maxwellian tail which tends to flow around the magnetosphere. 

measurements indicate that the spectrum "hops" back and forth between 

these two states in the outer transition region, but that the plasm 

generally "settles" into the broader state within two earth radii of 

the magnetosphere boundary. In the electron mode, the Vela analyzers 

generally detect isotropic distributions with 10 K. 

The higher temperatures are found near the-17 Re magnetospheric boundary 

(0.6-0.9)~(~), k T '  z ( 3 - 5 )  KTP)) with a 
P P P 

The 

60 80 K <TeC 3 x 10 

and the Explorer 12 CDSTE response (Freeman, 1964) also indicates that 

large fluxes of kilovolt electrons are present just beyond the magneto- 

pause. 

The most plausible explanation for the "hopping" in the outer 

transition region is that the region contains filaments with two plasma 

states which the spacecraft encounters alternately as it moves along 

- 19 - 
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its trajectory. [ The very large amplitude, short-period magnetic pulses 
observed on Pioneer I (Sonett and Abrams, 1963, Figs. (3)  - (10)) and 
Explorer 12 (Cahill and Amazeen, 1963, Fig. ( 3 )  may be solitary waves 

which propagate upstream and trigger the drift instability causing fila- 

ments of the second plasma state; kinematic considerations then suggest 

that, on the average, the most distant upstream magnetic disturbances 

should be located near the fluid dynamic "shock" boundary. ] If the 
second or "warm" plasma state is indeed one of the marginal stability, 

then in the electron rest frame, rough equipartition of mechanical energy 

yields N ' ( $ m  vj2 + ' K Ti) A.J 5 Ne' KTd, so that T'/T' >> 1 and 
0 P PI? 2 e P  

I =  v AJ 16 KT' (See Fig. 1). Peak ion wave potentials as large as 
P P  P 

0. 35(mp~F)2/2) (Stix, 1964) may then be anticipated. 

As noted above, the analyzer results do indicate that TL >>  TI in 
P 

the transition region and these observations are also reasonably consis- 

tent with the stability condition v' AJ 4(2 KTt/m 1'. 
region measurements of ion wave potentials have been made, but the presence 

of spikes of superthermal electrons (E > 40 keV) can indicate that peak 

1 
No direct transition 

P P P  

potentials on the order of hundreds of volts develop, as discussed by 

Scarf, et.al., (l965), Fredricks, et .al., (1965). However, these early 

comparisons are subject to several uncertainties, and no unambiguous 

identification with a state of marginal stability can be made at this 

time. For instance, although electron angular distributions are generally 

fairly isotropic in the inner transition region, it is not yet possible 

to determine with any accuracy the extent to' which the electron rest frame 

- 20 - 
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differs from the spacecraft frame of reference. An even more serious 

problem is related to the possibility that hypothetical large amplitude 

electrostatic oscillations may introduce biases into operation of plasma 

probes. 

unexplored, there is some reason to believe that the averaged response 

from the electrostatic analyzers on Vela 2A, ZB, OGO-A and IMP-B is not 

seriously contaminated by such oscillations. In particular, simultaneous 

time-averaged (transition region) positive ion measurements from Vela 2A, 

OGO-A and IMP-B yield points which fit remarkably well with a siqle 

proton-alpha particle spectrum (J. H. Wolfe, S. J. Bame and I. B. Strong, 

private communication). 

energy windows, angular aperatures, switching and sampling times,etc., 

and since they are located on spacecraft of greatly varying physical sizes 

and shapes, this correspondence is quite significant. 

analyzers measure essentially D.C. proton fluxes down to 300 ev; the 

agreement then indicates that any serious contamination affects only 

protons with lower energies, that it is of such a nature that it does not 

register on analyzers with long time constants, or that it disappears 

when the instantaneous analyzer response is averaged over several sampling 

cycles. 

Although this aspect of the plasma instability is relatively 

Since the analyzers have different energy ranges, 

The OW-A and Vela 

Finally, it is worth noting that the drift instability discussed 

above is readily produced in the laboratory when charge separation electric 

fields are imposed on collisionless plasmas with Te/Ti >> 1. Figure 9(a) 

shows the energy spectrum of a stable cold (Ti ZIOO°K)  cesium beam while 
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it is being neutralized by 3000°K electrons (Sellen and Shelton, 1961). 

The neutralization is deliberately non-uniform so that significant 

electric fields are present throughout the system. 

zation is nearly complete (i.e., when the beam becomes a plasma), the 

ion spectrum suddenly broadens and shifts to a somewhat lower mean 

streaming energy (Fig. g(b)); at the same time the electrons gain addi- 

tional thermal energy (determined by the emission spectrum of cesium 

atoms and ions) and large amplitude, low frequency space charge oscil- 

lations occur (determined by deflection of an electron beam probe and 

by measurement of a modulated ion current at the collector). 

When the neutrali- 
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60 

40 

UNSTABLE REGION 

MARGINAL STABILITY 

IN ELECTRON REST FRAME 

0, I I I I I 1 
1 5 10 15 20 25 

T /T 
= P  

Figure 1. Stabil i ty  diagram for  a hydrogen plasma with maxwell- 
boltzmann distribution f'unctions. 

the system is overstable and large amplitude electro- 
s ta t i c  plasma oscil lations develop. 
the k 

If the re1 t ve 
electron-proton d r i f t  speed is greater than ' t c f  ( T e > T l ) ,  

For Te/bi S 20, 
0 modes grow most rapidly. 
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t 

V 
P va'vp 

P 
V 

Figure 2. Composite mexwellian velocity distribution 
for the case Ve = 0, Te > > T i ,  and for the 
two cases v > v and v c v 

a P a P  
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Figure 4. The plasma dispersion function 2 ' ( (8 1 1 on the camplex 
For 91 negative 2 '-plane fo r  $1 positive and real 

and real, the  function is reflected across the real 
axis. The origin corresponds t o  #l = f @ 
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Figure 5. The intersection of the traJectories Z ' ( h )  and 
for a relative dri f t  vcw - vp = 0.- 



Fi 
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.gure 6 .  Tho intersection of the traJectories Z'(@,) 
a relative d r i f t  va - vp = 0 . and G'(p2)  for 



Appendix A 

Figure 7. The intersection of the t ra jec tor ies  Z'(@J) and G ' ( @ z )  for 
a re la t ive d r i f t  va - vp = - 0.5% )i 
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\ w 8 = 1.2, r 
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= 0.1 
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Figure 8. The critical normalized &if% velocity wp = vp/"p 
for marginal s t ab i l i t y  as a function of relative 
proton-alpha particle drift (va - vp)/ap 
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Figure 9(a) Collisionless cesium beam i n  non-oscillatory 
state while it is being neutre;Lized non-uniformly. 

Figure g(b) . When neutralization is nearly complete, plasma 

I n  the osci l la tory state, 
oscil lations occur. The cesium spectrum is broadened 
and the ions lose energy. 
hot electrons are produced and they excite spectral  
l ines  of cesium I and cesium 11. 
oscillation.f’requency is very low i n  the plasma 
frame of reference; in  the lab frame 03 2 ku, w i t h  kL 

The space charge 

1. 



. 

Appendix A 

REFERENCES 

Aller, L. H., The Abundance of the Elements, Interscience Publishers, Inc., 

New York, 1961. 

Bame, S. J., J. R. Asbridge, H. E. Felthauser, R. A. Olsen and I. B. Strong, 

Characteristics of the particle activity near the dawn boundary of 

the magnetosphere, Trans. Am. Geophys. Union, 46, 142, 1965. 

Bernstein, I. B. and R. M. Kulsrud, Ion wave instabilities, Phys. Fluids, 

2, 937, 1960. 

Bernstein, W., R, W. Fredricks and F. L. Scarf, A model f o r  a broad dis- 

ordered transition region between the solar wind and the magnetosphere, 

J. Geophys. Res., 6 3  1201, 1964. 

Cahill, L. J. and P. G. Amazeen, The boundary of the geomagnetic field, 

J. Geophys. Res., 1835, 1963. 

Fredricks, R. W., F. L. Scarf and W. Bernstein, Numerical estimates of 

superthermal electron production by ion acoustic waves in the 

transition region, J. Geophys. Res., 70, 21, 1965. 

Freeman, J. W., Jr., The morphology of the electron distribution in the 

outer radiation zone and near the magnetospheric boundary as ob- 

served by Explorer 12, J. Geophys. Res., 64, 1691, 1964. 

Fried, B. D. and S. D. Conte, The Plasma Dispersion Function, Academic 

Press, New York, 1961. 

Fried, B. D. and R. W. Gould, bngitudinal ion oscillations in a hot plasm, 

Phys. Fluids, 4, 139, 1961. 

- 32 - 



. 
Appendix A 

Jackson, E. A., Drift instabilities in a maxwellian plasma, F'hys. Fluids, 

5 786, 1960. 

Penrose, O., Electrostatic instabilities of a uniform non-maxwellian plasma, 

Phys. Fluids, 5 258, 1960. 

Scarf, F. L., W. Bernstein and R. W. Fredricks, Electron acceleration and 

plasma instabilities in the transition region, J. Geophys. Res., 70, 

9, 1965. 

Sellen, J. M., Jr., and H. Shelton, Transient and steady state behavior in 

cesium ion beams, in Electrostatic Propulsion, pp. 305 - 356, edited 
by D. B. Iangmuir, J. M. Sellen, Jr., and E. Stuhlinger, Academic 

Press, New York, 1961. 

Sonett, C. P. and I. J. Abrams, The distant geomagnetic field. 3. D i s -  

order and shocks in the magnetopause, J. Geophys. Res., 68, 1233, 

1963 * 

Stix, T. H., The Theory of Plasma Waves, Ch. 9, McGraw-Hi11 Book Co., New 

York, 1962. 

Strong, I. B., J. R. Asbridge, S. J. Bame, H. E. Felthauser and R. A. Olsen, 

Positive ion angular, spatial and energy distributions as measured 

near 17 Re by an electrostatic analyzer (0.3 to 20 keV), Wans.. Am. 

Geophys. Union, 42 624, 1964. 

Strong, I. B., J. R. Asbridge, S. J. m e ,  H. E. Felthauser and R. A. Olsen, 

Solar wind directional distributions in interplanetary space and the 

transition region, Trans. Am. Geophys. Union, 46, 134, 1965. 

- 33 - 



~ ~~ ~ 

Appendix A 

Wolfe, J. H. and R.  W. Silva, Results of the NASA-Ames Research Center 

plasma probe on the Interplanetary Monitoring Plasma, Trans. Am. 

Geophys. Union, 604, 1964. 

Wolfe, J. H., R. W. Silva and M. Myers, Preliminary results from the 

Ames plasma probe: DIP-1 and OGO-1, Trans. Am. Geophys. Union, 46, 

119, 1965. 

- 34 - 



. 
Appendix B 
8494-6008-RU-000 . * 

PRODUCTION OF SUPERTKERMAL ELECTRONS 
BY ELEZTIiOS!WI'IC PIASMA OSCILLATIONS 

R. W, Fredricks 
TRW Space Technology Laboratories 

Redondo Beach, California 

June 2, 1965 



Appendix B 

Abstract 

39797 
The beam-plasma interaction which has been proposed by Stix is examined 

both by approximate analysis and by integration of the nonlinear equations of 
motion which describe the interaction of an individual electron with a mono- 
chromatic large amplitude electrostatic plasma wave. The quasi-stochastic 
model of the large amplitude plasma waves, introduced by Stix, has been used 
in the calcualtions by programming a random phase function into the argument 
of the periodic plasma wave function. 
to a quasi-cyclotron acceleration which limits generally at a higher energy 
in the stochastic case than the limit found in the non-stochastic case (a 
phase-coherent plasma wave). 
limit cycle phenomenon, and the stochastic phase shift appears to push 
electrons across these limit cycles. It is also found that favored groups 
of electrons in a 2eV plasma excited by a 5 keV beam in a 2000 gauss field 
can achieve energies in the range 85 to 170 keV in less than a nanosecond 
by a single acceleration occurring in one plasma wave coherence length L,, 
as defined by Stix. 

It is found that electrons are subject 

This behavior is interpreted i n  tenas of a 
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I. INTRODUCTION 

1 In  a recent paper S t i x  has proposed a beam-plasma interaction i n  which 
overstable electron plasma oscil lations produce cyclotron acceleration of 
electrons t o  high energies (> 100 keV). 

stable ion plasma oscil lations has been proposed by Fredricks, e t  a1 t o  
explain measurements of superthermal electrons 
instruments i n  the region of interaction between the solar  wind (expanding 
solar  coronal plasma) and Earth's mgnetic f ie ld .  
process may be responsible f o r  the production of the energetic electrons 
(2 100 keV) produced when beams of moderate energy (5-20 keV) are passed 
through a warm plasma (Wea 2-20eV) confined i n  a magnetic mirror f i e ld  

A similar mechanism employing over- 
2 

N 

-- 
40 keV) by spacecraft-borne 

This cyclotron acceleration 

(B N 2000G) 3,4,5* 
0 

1 The basic mechanism proposed by St ix  is  a quasi-stochastic cyclotron 
acceleration of a selected group ( i n  velocity space) of electrons by e lec t r ic  
f ie lds  g(g, t )  due t o  overstable plasma oscil lations excited by the double 
stream ins tab i l i ty ,  
the electron cyclotron frequency, and the velocity group of accelerated elec- 
trons contains those which "feel" the wave frequency a t  the i r  local  cyclotron 
frequency as a consequence of the Doppler sh i f t .  

process extracts energy from the wave f i e l d  (cyclotron damping) it is  

necessary t o  show from the dispersion relat ion that the growth ra te  of the 
e lec t ros ta t ic  f i e l d  g can overcome (or at  l ea s t  balance) the decay ra te  due 
t o  cyclotron damping. 

The frequency of osci l la t ion of,& is  assumed t o  be nearly 

Since th i s  acceleration 

The mode considered i n  d e t a i l  by S t ix  is  one i n  which 
H l u  k x E = Q, 5 x I3, F 0, that is  a mode having components &(k,, k,, ) both 

perpendicular t o  and para l le l  t o  ,Bo. 

The quasi-stochastic feature of t h i s  picture' a r i ses  from the descrip- 
t i on  of the nonlinear growth of the plasma oscil lations t o  large amplitudes. 
It is assumed that the primary result of the growth of the nonlinear osci l la-  
t ions i s  a breaking of the plasma waves leading t o  large-scale decoherence 
i n  the phases of the osci l la t ions i n  various regions of the plasma. 
depicted by Stix, large amplitude oscil lations appear as "a conglomerate of 

As 

-1- 



regions of osci l la t ion which are individually coherent but mutually incoherent". 
The scale s i ze  of individually coherent regions i s  described s t a t i s t i c a l l y  by 
introducing a correlation length L,, related t o  the wavenuniber &(w) of the 

dominant plasma oscil lation. The arguments involved are given by St ix  
are not reproduced here) and he concludes L,, 

1 

0.637*hl, = O.637(2n/kl,). 
(and 

The ef fec t  of introducing such a correlation length fo r  phase coherence 
is t o  destroy the par t ic le  velocity-position correlations which tend t o  build 

up w i t h  t i m e ,  leading t o  trapped par t ic les  and a damping of the nonlinear 
osci l la t ion t o  produce a small l imiting amplitude of the wave. 
resul ts  of the investigation reported i n  the present papep is the discovery 

of a magnetic trapping phenomenon which would severly l i m i t  the f i n a l  energy 
achieved by an electron subjected t o  the cyclotron acceleration by a eom- 
pletely coherent wave. However, the introduction of a correlation Length fo r  
phase decoherence is  shown t o  produce an untrapping which allows part ic les  t o  

be accelerated beyond the limiting energy for  fu l ly  coherent wave fields of 
equal amplitude 

One of the 

The primary difference between the analysis i n  the present paper and 
that of Stix' i s  the way in  which the equations of motion of the electron 
are treated. 
d i f fe ren t ia l  equations analytically, the present investigation is EL combina- 
t i on  of approximate analysis and analog computer studies of the equations of 
motion. 
plasma osci l la t ion is  introduced in to  the problem, 
length, the computer solutions in this paper were obtained by introducing a 
random amplitude (between + n and - n) phase shift  + in to  the wave 
Eocos[&og -ut + +(t)]. $ ( t )  i s  given a temporal period T 

d r i f t i ng  a t  velocity V,, parr l le l  t o  the magnetic field, t h i s  i s  equivalent 
t o  a correlation length L,, = I$Tph0 
is indeed capable of producing superthenas1 electrons. 

Whereas S t ix  has attempted t o  t r e a t  the essent ia l ly  nonlinear 

Another difference i s  the way the stochastic phase sh i f t  of the 

Instead of a correlation 

FOP a part ic le  
Ph 

It i s  found that the 'basic mechsnism 
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11. APPROXIMATE LIMIT CYCLE SOLUTIONS 

Consider an electron i n  a magnetostatic f i e ld  go in  the 2-direction and 

an electrostatic oscil lation of potential 

@ = (dosin(klx + k,,z - wt + $) 

where $ is  a random phase variable ( -  n 5 + 5 n) ei ther  of correlation length 

L,,  or  of period T The equations of motion are 
Ph' 

% - wc+ = (kLe@,/m)cos(kLx + k,,z-wt + $)  
w % + j i  = 0 

C .. z = (k,le@o/m)cos(kLx + k,,z-urt + $) 

The analytical techniques for  handling nonlinear equations of the sort  
i n  Eqs. (1) are quite limited, although moderate success may be anticipated 
i n  cases of "small" forcing terms, that is  when the modulus of the r.h.8. 

of (l), Ikle@,/m, i s  small compared t o  some i ne r t i a l  quantity such as 2, f, 
2. 

.c5 .. 
One may expect that solutions t o  (1) could exhibit, under some circum- 

6 stances, a limit cycle phenomenon . 
can be demonstrated quite easily i n  the case k,, = 0, $ = 0, 

assume a periodic orbit  of the form x ( t )  = Rsin(wt + CY), y ( t )  = Rcos(urt + a), 
CY = const., and examine the time-averaged force Over one cyclotron per$& 

The plausibi l i ty  of l i m i t  cycle solutions 

One can then 

- 
eo+zn 

(fi) = (k,.er$o/2m)~ cos(klRsin(8 + a) - wO/wc) de 

where 8 = wt. 

w/wC = n = 0,1,2,3ae.0 
cylinder function Z (k R). I n  either case, it w i l l  be a damped oscil latory 

function of k,R, the zeros of which w i l l  be points of e i ther  stable or  un- 
stable equilibrium depending upon the slope of the function Jn or Zv i n  the 
vicini ty  of the zero. The points of stable equilibrium where (ti) = 0 can 
be l i m i t  cycle orbits. Although it has not been shown here that orbits for 

which (2 )  i s  valid are accessible from arbitrary i n i t i a l  conlitions on (1)) 

The integral  in (2 )  is  a Bessel function Jn(kLR) i f  

For non-integral w/wc = fl, it is a generalized 
7 

V I  

-3- 



L 

Append42 B 

at  l e a s t  plausibi l i ty  of l i m i t  cycles may be inferred. 
Section IV.B. below that analog computer solutions t o  (1) do indeed exhibit 

a type of l i m i t  cycle behavior. 

It will be seen i n  

- 

111. PERTURBATIOn SOLUI'IONS 

If the amplitude k,le@dm of the forcing term i n  the third member of 
Eqs. (1) is small i n  the sense previously described, one may write an 
approximate expansion 2 

2 
kl,z - k,,zo + kllVllt - e@o/m >cos[kLx + k,,zo 

- k,,V,,t - Wt + +] + ' (3  1 
where zo is  the i n i t i a l  value of z ( t )  and 5, is the i n i t i a l  value of 2, 
For k,, e@o/mu, 5 0.1, the oscil latory term in  (3) will introduce phase shifts 

For 
2 2 

varying between a t  most - + 3.6 deg. in to  the r.h.s. of the f irst  member of (1). 

If one neglects these small oscillations, then Eqs. (1) degenerate in to  the 
transverse equations 

\ 
2 - we$ = (kLe@o/m)cos(kLx - B m c t  + + )  

w 2 + y  = 0 
C } (4) 

1 
where B = (w - kllV,,)/cuc is a normalized Doppler-shifted frequency. 
are those treated quasi-s ta t is t ical ly  by St ix  t o  obtain an expression fo r  
the transverse energy W p )  obtained by an electron after N collisions with 

the stochastically phased e lec t r ic  f ie ld .  (It will be shown in  Section N . C .  
2 2 below that under appropriate conditions on the parameters B and fL= kLe(bo/nwc , 

solutions t o  (4) can be obtained, f o r  electrons drift ing through a single 
correlation length L,,? VllTaCc wherein 

of a cool plasma dis t r ibut ion that can absorb energy fromthe e lec t r ic  f ield 

i n  a time Tact l e s s  than or  equal t o  the i r  d r i f t  time across a coherently 
phased c e l l  of dimension L,l .  ) 

Eqs. (4) 
1 

- 

= const., that yield very energetic 
electrons. That is, there will be electrons i n  the t a i l  [v = V,,>>(2bTe/m) 1/21 

-4- 



A very crude estimate of the behavior of (4) has already been made, 

resulting in EQ (2) fo r  (5 ) .  one can also form an energy rate  equation from 
(4), t h a t  is 

[(g)' + ($)2] = $ = et$ Bw cos(kLx-(kuet + +) + et$, E d sin(klx-Bwct + +) 
z at o c  

(5 ) 
If one assumes that the motion ensues on orbits of the sor t  x ( t )  = p( t )  sinwct, 
y ( t )  = p ( t )  coswct where p ( t )  changes very l i t t l e  Over the interval 
2(m-l)n 5 w c t  5 Zmn, m = integer, then t o  first order the change in WI aver 
one cyclotron period is  

where (p) is  the mean value of p ( t )  over this interval, Ap is the change i n  
p ( t )  and it is assumed that Ap e (p), and Z8(kL(p)) is  the generalized 

cylinder function defined by the integral in E q o  (2). 
phenamenon of (2) i s  again apparent i n  (6), because of the zeros of Z 

The l i m i t  cycle 

8' 
Two cases of interest for the purposes of comparison with l a t e r  analog 

solutions t o  (4) are B = 1 and $ = 2. 

AWL= Jl(kL(p)) or  J2(kl(p)). 
cyclotron orbi t  wauld appear t o  grow a t  first, un t i l  a mean radius (po) 

corresponding t o  the first maximum of Jn(k(p)) i s  reached. 
successive AWL should continually decrease un t i l  the l i m i t  cycle orbi t  

The trajectory x( t ) ,  y ( t )  on the X-Y (p)- n 1 
plane w o u l d  appear t o  be a non-uniform sp i ra l  i f  (6) is valid (see Fig. 5). 

If one selects COS$ = 1 then 

Thus, the energy increments an each quasi- 

Beyond (p,) the 

, J (k (p)-) = 0 is reached. 

Eq. (6) i s  only quali tativelycorrect,  and the l i m i t  cycle location at  
(In fact ,  such that J (k (p)-) = 0 may be numerically incorrect. kl(P )- n l  

analog computation shows that t h i s  is  the case,) A more refined perturbation 

analysis can be made by introducing solUtions of the type 

where c j ( t ) ,  Tj( t )  << (p), , and linearizing equations (4) t o  first order 

in 5"d 5 .  The result is 

-5 - 
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which are valid over t 5 t < t + 2n/(oc, and (p) 

during this time interval. If the second of these equations is integrated 
is the mean gyroradius 3 j s 

, and we let = 0, then a 
= 

for initial conditions I: = 0, i, = o at t 
combination of the result with the first equation yields 

j 

= (kle@o/m)cos(kL(p) jsimct - Bwct) (7) 
This equation is approximately valid only up to time t = t 
( P ) ~  must be adjusted to a new value (p) 

+ 2n/wc , where 3 
3+1 

Eqs. (7) is an inhomogeneous Hill's equation of the form 

where the f'unc%ions f(t) and g(t) are expansible into Fourier series on the 
interval T. 
infinite determinants, the elements of which are functions of the Fourier 
expansion coefficients, and can be found for instance in McLachlan 
intricate calculations w i l l  not be performed here, since the nonlinear 
equations (4) hve been solved on an analog computer. 
been introduced only to demonstrate that the crude result (6) could be further 
refined if necessary, and the location of the limit cycle given by (6) may 
well disagree with that found by solving a chain of equations such as (7) 
where (p)  

The procedural details of solving an equation such as (8) involve 

8 These 

The equation (7) has 

is readjusted after each cyclotron period. 
j 

IV. ANALOG COMPUTER RESULTS 

A. Stochastic Phase Shifts 

For the purposes of analog computation, it is convenient to east Eqs, 
(1) into a dimensionless form. One can define the dimensionless variables 
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and parameters 5 = klx 
2 

become in this representation 

11 = s y  , 6 = kl,zl , z1 = z + Viit , T = wet , 
e@o/mE . Then the equations of motion B = (. - )/We 9 fA, \ I  = kl, 11 

.. 0. 

5 - 7 = fpos(5 + r̂l - 87 + +) 
0. 

2 + 7 l  = 0 

The phase function $ is considered a function of T, such that it will re- 
present a random amplitude in the range - n 5 + 5 n over a time interval 
AT = Tph. 

Equations (1) were programmed on an electronic analog computer for 
various values of fi, fll, B and initial data. The phase function $ was 
introduced in various forms, ranging from a time independent constant 
($ = 0, the case discussed in Section IV.C. below), through a series of 
pulse periods T to a broadband gaussian noise signal. The dimensionless 
t m  intervals over which solutions to ( 9 )  were obtained were 0 5 T 5 1000, 

corresponding to same 160 cyclotron periods. 

Ph' 

The dimensionless transverse velocity 

is related to the transverse energy in the following way: 
n 

To determine the effect of the random phase shift $(T) on the energy 
WL achieved in the time T = 1000, values fi = fli = 1.0 and B = 1.75 were 
selected, and the repetition period T was varied. The results of this 
computation are shown in the bar graph of Fig. 1. 
wL(max) = 1.8 shows the maxim velocity reached in the case $(T) = 0 
(Tph -4 -) which represents a f'ully coherent wave. The bar sham at T 
is the result obtained by using a wide band (0 - 100 kc) gaussian noise 
source to represent +(T). 

Ph 
m e  horizontal line at 

= 0 
Ph 

(9) 

-7- 
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The effect  of fixing the repetition period of the random phase function 

a t  a value T 
is  shown i n  Fig. 2. 

t ion i s  rather broad banded w i t h  respect t o  8 ,  a t  l ea s t  for  the values 
f, = fII = 1.0. However, th is  i s  a case i n  which the force parameters are 
"large" i n  the sense of Sections I1 and 111; in these large force cases, any 
"resonance" one might expect as a function of f3 is distorted by nonlinear 
effects. 
Sections I1 and 111, as i n  Section IV. C. below, the resonance conditions 
f3 = n = l , 2  seem t o  hold approximately, and the broad bandedness inferred 
from the large force case i n  Fig. 2 cannot be extrapolated t o  the small 
force cases. (This broad or narrow banded behavior of the acceleration 
process clearly i s  of importance i n  assessing the merits of the proposed 
mechanism fo r  producing energetic electrons. 
enough t o  produce a broadband acceleration, large velocity groups of plasma 
electrons will absorb energy from the plasma wave leading t o  severe damping 
effects  on the e lec t r ic  f ie ld  oscillations. 
discussed la te r .  ) 

= 2.0 and varying the normalized Doppler shifted frequency B 
Ph 

One can see that over the time period used, the accelera- 

On the other hand, when fL  and f , ,  become small i n  the sense of 

If the forces are large 

This point will be more ful ly  

The transverse energy relation (u) suggested a study of solutions as 
a f'unction of fL, i n  the hope that the r a t io  wL(max)/2fiwou.ld increase w i t h  

decreasing fi. 
implicit i n  wl (max), the effect  of varying f,,  was studied. 

l i s t  of results wL (max) obtained by integrating EQs. ( 9 )  from T = 0 t o  
T = 1000, for  the case f! = 1.75. 
are: 
f,,>> fl ; (2) solutions for  small values of' fi and f,, yield more favorable 

2 

Also, since f , ,  does not appear expl ic i t ly  i n  (ll), but is 
Table 1 is a 

The noteworthy features of these results 

(1) for  very large f , ,  the value of w,(max) is  obviously reduced i f  

ra t ios  (higher WL) w L ( ~ ) / 2 f i  2 

As another example of the effect  of stochastic phase shift i n  ( 9 )  on 
the value wL(max), twenty-six successive integrations of ( 9 )  from T = 0 t o  
T = 100 were performed, using fi = 5.0, f,, = 6+5,  f3 = 1.0, T = 2.0. The 

ph 
result ing values w a t  T = 100 for each computer integration-are shown i n  I 

-a- 
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Fig. 3 as a sca t te r  diagram. The arithmetic average cL = 7.9 is shown as 
the horizontal l ine,  and the variance Awl = - + (C(w, - vL)2/I?)1'2 is  shown 

as the e r ror  flag.  

B. L i m i t  Cycles 

With reference t o  Fig. 1, it can be seen tha t  the value wL(max) reached 

by an electron tends t o  be smaller i n  the case of a coherent wave ($(T) = 0, 

the horizontal dashed l ine  i n  Fig. 1) than that reached f o r  a random phase 

shif t  f(7)h 0. 

stochastic phase shif t  produces forces (or impulses) capable of "kicking" 

the electron across the l imi t  cycle orbi ts  crudely predicted by Eq. (6). 
There a re  probabilities, of course, that the impulses produced by abrupt 
phase shif ts  are e i ther  decelarative or accelerative, 
shown i n  Fig. 1 indicate, however, that there is  a net preference fo r  accelera- 
t ion.  (Unfortunately no growth time studies were &e f o r  the computer 
integrations shown i n  Fig. lbecause the amount of computer time t o  furnish 
adequate s t a t i s t i c s  would have been prohibitive ) 

The conclusion reached by study of the bar graph i s  that the 

The computer results 

It seems plausible that there exis ts  a (non-relativistic) pract ical  
l i m i t  t o  the transverse energy acquired by an electron under the conditions 
described by Eqs. ( 9 ) ,  since the cylinder function 2 (k ( p ) )  exhibits damped 
osci l la t ions as kL(p) increases. Thus it is  reasonable that  an orbi t  (near 
one of the zeros of Z ) w i l l  be reached where the stochastic pulses clue t o  
phase shift ing become too weak t o  energize the electron fhrther.  (Perhaps 

another way t o  s t a t e  th i s  i s  that the growth rates  of solutions t o  Eq. (7) 
become vanishingly small on these mean orbi ts . )  

B 

B 

Two cases were studied by computer integration i n  order t o  empirically 
es tabl ish th i s  sor t  of limiting behavior. In  the first case, the values 

f" = f,, = 1.0, B = 1.75, Tph = 2,O were used i n  Eqs. ( 9 ) .  
proceeded from null  i n i t i a l  data a t  T = 0 t o  a f i n d  value wl(max) = 6.25 
a t  T 5 1000. 

were then selected. These conditions were s ( 0 )  = 6.5, T(0) = 1.0, s ( 0 )  = 

T(0) = 0. 

The integration 

I n i t i a l  conditions lying outside the limiting orb i t  wL = 6.25 . 
The solution t o  (9) was then begun, and at  early times in  the 

-9- 
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integration (T << 1000) a f e w  orbits corresponding t o  wL - 7.2 were observed, 
but for  most of the period 0 S T 5 1000 the solution remained i n  the v ic in i ty  
of 5- 6.25. 

As a check, a second case i n  which fi = loo, f , ,  = 0.1, B = 1.75, Tph= 2.0 

was studied. 
by integration over 0 5 T 5 1000, 

j ( 0 )  = 10.0, {(O) = 1.0, c ( 0 )  = l (0)  = 0, and inkegration of (9) begun. 
solution decayed steadily in to  the  region near wL = 7.5 and remained there 
f o r  most of the integration period 0 S T C 1000. 
t ions of (9) therefore lend strong empirical support t o  the existence of the 

pract ical  l i m i t  cycle for  the acceleration process. 

For zero i n i t i a l  conditions the value wL (max) = 7.5 was achieved 

The i n i t i a l  data were then changed t o  
The 

These two analog integra- 

A rather graphical i l lus t ra t ion  of the existence of several l i m i t  cycles 

in te r ior  t o  the pract ical  l i m i t  cycle, and of the capabili ty of the stochastic 
phase function $(T)  t o  force electrons across such l i m i t  cycles was found i n  
the solution t o  (9) fo r  the values $ = 5.0, f,, = 0, fl = 1.0. 

data were s ( 0 )  = T(0) = 0, i ( 0 )  = i ( 0 )  = 0.1. 

analysis [Eq. ( 6 ) ]  yields 

The i n i t i a l  
In  this  case, the crude 

-9 
which vanishes 7 fo r  kL(p) = 3.83, 7.02, 10.17 13.32, 16-47, . . e .  (The roots 

of J1 given i n  i t a l i c s  are those f o r  stable equilibrium.) One can show that 

kL(p) a wL since 

Two phase functions were used: 
solutions i ( ~ )  and i(~) were plot ted by an X-Y recorder fo r  0 5 T C 1000. 

coherently phased wave ($ = 0)  produced a l imiting transverse velocity 
wL(m&x) * 7.2, corresponding roughly t o  the second zero of J1. The solution 
f o r  the  case of phase decoherence (t # 0) on the other hand produced a value 

wL(max) 15.5, tha t  is somewhere between the fourth and f i f t h  zeros of J1. 
Furthermore, dark rings indicated unusually high densi t ies  of orbi ts  i n  the 
vicini ty  of wl - 7, 10 and 13, i .e.  near the zeros of J1. 

f (7 )  = 0, and ) $ ( T )  I 5 n w i t h  T = 2.0. The 
Ph 

The 

The nature of t h i s  

-10- 
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X-Y plot of wL ( 7 )  i s  sham i n  Fig. 4. 
probably due t o  the fact  t ha t  fL = 5.0 represents a rather "large" forcing 
term i n  the sense of Sections I1 and 111. These results tend t o  confirm 
empirically the concept t ha t  l i m i t  cycles exist ,  forming "magnetic traps" 
analogous t o  the electrostatic trapping phenomenon, and that stochastic 
phase sh i f t s  aid i n  allowing particles t o  become untrapped from orbits of 
lower transverse energy and proceed t o  orbits of higher energy un t i l  some 
practical  l i m i t  i s  reached. 

The lack of a ring near wL- 3.8 is  

C . Coherent Acceleration and "Resonance" 

The case of coherent acceleration was studied fo r  two small force 
amplitudes, fi = f , ,  = 0.1 and 0.05. 

fl = (w - V,,k,,)/wc = + 1 and + 2 were found t o  be "resonant" i n  the sense 
tha t  they produced rapid growth of the perpendicular velocity w,(?) t o  i t s  
maximum value, while other values of fl did not produce rapid growth. 
solution ~ ( 7 )  = {( i)2 + (b)2}1/z t o  Eqs. (g), as displayed on an X-Y plot ter  
for  the case fL = f,, = 0.1, fl = 1.0, i s  sham i n  Fig. 5 .  
has the non-uniform spiral-l ike feature discussed i n  Section 111. 
successive loop of the sp i ra l  developed over approximately one cyclotron 
period, that i s  i n  A t  a 2n/wc. The trajectory of ~ ~ ( 1 )  for  the other cases 
of interest ,  namely fi = f,, = 0.1, If31 = 2.0 and fi = f , ,  = 0.05, If31 = 1.0, 

2.0 are similar i n  appearance. 

The n o m l i z e d  frequencies 

- - 

The 

This trajectory 
Each 

From X-Y plots such as Fig. 5 ,  growth curves of w,(?) vs ? were corn- - 
puted, and are shown i n  Figs. 6 and 7. 
be very sensitive t o  the choice of i n i t i a l  conditions. 
immediate growth was obtained only for  i n i t i a l  velocity conditions yL(0) 
nearly tangent t o  the spiral-like trajectory (Fig, 5 ) .  
violating the near-tangency conditions produced i n i t i a l l y  decayfng solutions 
w,(T) which remined near ~ ~ ( 7 )  = 0 for  periods long compared t o  the growth 
times shown i n  Figs. 6 and 7. Furthermore, it was determined that even for  
near-tangent gL(0), i n i t i a l  values w,(O) 5 0.4 lead t o  very slowly growing 
solutions which took (typically) some hundreds of cyclotron periods t o  

The growth properties were found t o  
A s  an example, 

I n i t i a l  conditions 

-11- 
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attain values wL 2 0.6. 
conditions to obtain rapid growth, it appears to be an empirically estab- 
lished result that only a small and select group of an initial velocity 
distribution f(xJ) can be "resonantly" accelerated in a given cell of 

length L,, = V,, tacco 
wave damping may result from the production of energetic electrons by this 
process. 

Because of these severe restrictions on initial 

In this sense it seems plausible that only small 

The growth curves for fJ = 0.9, 1.1, 1.9, 2.0, 2.1 and 3.0 are sham 
Since the in Figs. 6 and 7 to illustrate the sharpness of the resonance. 

camputer solutions were allowed to develop only up to T = 50, the maxima, 
in these cases were not achieved. 
would have occurred only after some hundreds of cyclotron periods. 

However, it appears that such a maximum 

In Table I1 we list the maximum transverse energy W , ( m a x )  and the 
acceleration time tacc in units of the peak wave potential eq0 and cyclotron 
period Tc = 2n/cwc respectively, for the caseslf')= 0.1 f i  , 0.05 f i  and 
fJ = + 1, + 2. 
curves in Figs. 6 and 7 and the use of EQ. (11). 

These values can be computed by inspection of the growth - - 

v. NUMERICALEXAMPLES 

To illustrate the application of the theoretical results just obtained, 
they w i l l  be used to estimate the accelerations of electrons under conditions 
of beam-plasma interaction similar to those investigated numerically by Stix' 
For example, consider with Stix a Vb = 5 kV beam interacting with a plasma of 
temperature kTe - 2 eV, immersed in a magnetic field Bo- 200%. 

w 

Stix is that he uses kL /krr - 0.76 while kL/klI = 1.0 is used here. 

Then 
= 3.5 x l o lo  sec''. The only difference from the parameters employed by 

C 

1 If one follows the argument presented by Stix concerning the limiting 

amplitude e@, - 0.35 eV 
fL = 0.1, 0.05 b e c e  

= 1770 eV, then the wave nmibers for the cases b 

2Tl 
XT k, = (fLmwc/e@)1'2 2 = 6.18cm-l, AL- 0.99 cm for fi = 0.1 - 
--I- 

= 4.38cm-I, hL- 0.70 cm for fi= 0.05 

-12 - 
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* 
The wavelengths are on the order of those used by Stix.  By use of Table 2 one 
computes the f i n a l  energies fo r  f" = 0.05, B = +1, + 2 - -  

W,(mx) = 230 keV, fl = - + 2 

W,(max) = 170 keV, P = -1 1 
43/wc = 1.23 x lom9 sec 

while f o r  fi = 0.1, 

t * 21+/wc = 0.685 x lo-' sec ac c 

W l ( " a x )  = 11'5 keV, P = - + 2 

W J ( m a x )  = 85 keV, P = 2 1 

The resonance conditions f3 = + 1, + 2 can be used t o  estimte the velocity - - 
groups of electrons subject t o  th i s  acceleration. Since the coherent accelera- 
t ions  computed i n  Section I V .  C .  require t h a t  the  acceleration occur within one 
d r i f t  time across a coherence length L,, 0.637 A , , ( =  0.637 Al), then the reson- 
ance conditions give 

wf9wc v,, = - 
k f l  

and 

LII - ' vI1  %cc 
1 Since the  condition for the plasm overstabil i ty according t o  St ix  

requires u) =. 1.063 wc , then it i s  easy t o  show tha t  only the condition 
f3 = + 1, fL = 0.1 and 0.05 w i l l  yield velocit ies V,, which sa t i s fy  the con- 
d i t i on  L,, X Vlltacc . 
V such tha t  L , , < <  V tacc. One obtains 

The other conditions f3 = -1 and f3 = - + 2 yield velocit ies 

II a x 10 cm/sec, p = 1, fi. = 0.1 
8 5.03 x 10 cm/scc, f3 = 1, fL = 0.05 

v" = t*57 
cm, = 1, fr = 0.1 (L,, = 0.631 cm) 

cm, = 1, = 0.05 (L,, = 0.446 cm) 
VI1 %cc 
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The conditions fL = 0.1, 0.05 and 8 = + 1 therefore can produce 170 keV 

and 85 keV electrons by acting on groups of electrons i n  the 2 e V  plasma w i t h  

narrow velocity bands centered about V,, = 3.57 x 10 

cm/sec. 

= 8.4 x 10 cm/sec. 

8 8 cm/sec and 5.03 x 10 

To determine how many electrons are subject t o  t h i s  acceleration, 
consider a 2 eV nraxwellian distribution. The mean thermal speed a = (2kTe/m) 1/2 

7 Hence one has fo r  the value of the Gaussian either 

o r  
-16 e - e  -36 = 2.37 x 10 , 13 = 1, fL = 0.05 WA(max) = 170 keV 

and it can be seen that very f e w  electrons w i l l  experience the resonant 
acceleration. 

V I .  SUMMARY DISCUSSION 

1 A basic assumption made by Stix that beam-plasma interactions in a 
magnetic f ie ld  can produce large amplitude plasma oscillations w i t h  e lec t r ic  
f ie lds  which are capable of producing very energetic electrons has been 
explored by integrating the equations of motion of an electron i n  such fields 

on an analog computer. Some crude resul ts  of analysis of the nonlinear equa- 

t ions of motion have been compared t o  the computer results, and qualitative 
agreement obtained. 

The occurrence of l i m i t  cycle phenomena i n  the transverse acceleration 
has been discussed on the basis of a time average treatment of the equations 
of motion, and apparently verified empirically by the analog computer solu- 
tions. 
electrons from l i m i t  cycle orbits has been investigahed by computer solutions 

using random phase functions i n  the argument of the periodic e lectrostat ic  
wave. 

1 The role of St ix 's  phase coherence correlation length in untrapping 

It has been found that when the dimensionless force parameter 
2 2 f = k e#to/mwc i s  large enough, the transverse energy achieved is  limited t o  

-14- 
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small multiples of ego , and the acceleration is  broadbanded i n  the Doppler- 
shifted frequency w - k,,V,,. 

becomes "resonant", the conditions being w - k,,VII= f BwC, fl = 1,2. The 
maximum transverse energy at resonance can then be one t o  two orders of 
magnitude greater than ego 

However, as f becomes small the acceleration 

The numerical example of a 5 -kV beam interacting with a 2 e V  plasma 
i n  a 2000 G f ie ld ,  treated by Stix on the basis of h i s  quasi-stochastic 
acceleration mechanism, has been investigated on the basis of the analog 
computer resul ts  of the present paper. 
compatible with the numerical values used by Stix, 85 t o  170 keV electrons 
can be produced i n  times on the order of 0.7 t o  1.2 nanoseconds by a coherent 
wave acceleration which occurs i n  one correlation length L I 1  as defined by 
Stix.  
t ion  is estimated t o  be small compared t o  the t o t a l  number density, so that 
cyclotron damping effects  should be negligible. 

1 

It is found that under conditions 

The fractional n W e r  density of electrons subjected t o  such accelera- 

The author wishes t o  thank D r .  T. H. St ix  f o r  valuable d iscys ions  and 
encouragement during this investigation. He is  also endebted t o  D r .  F. L. 
Scarf and W. Bernstein for  may stimulating discussions of the problem, and 
t o  J. M u h l  for  the computer programs. 

This work has been supported partly by the National Aeronautics and 
Space Administration under contract NASw-698 and par t ly  by the Independent 
Research Program of TRW Space Technology Laboratories. 
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Appendix I3 

I 
TA33LE I. Winrum Transverse Velocities for Stochastic Acceleration, * ’ .  

e = 1.75, i ( 0 )  = i ( 0 )  = 1, f(0) = q(0) = 0, Tph = 2.0, 0 S w - t  5 1000 c; - 

1 
- 
LO 

- 
5.5 

- 
0.4 
- 

0.4 

- 
3.0 

- 
28.1 

fl. LOO 10 1 0.2 1.0 

0.2 0 LOO 10 0.1 

7.5 4.3 3.8 

L4.5 I 20.0 

4.0 37.0 12.5 

6.81 200 7.8C 28 , 13 
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TABLE 11. Transverse Ehergies and Acceleration Times for Coherent Acceleration. 
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7 

6 

5 

4 
n 

U 2 
-4 > 

3 

2 

1 

C 
0 1 2 

I f = f  = l.O,P= 1.75 I 1 II 

4 5 6 7 8 9 10 

TPh 

Figure 1. Bar graph showing the l imiting amplitudes of w, reached i n  the 
time interval 0 S T 5 1000 as a function of the pcriod T 

the stochastic phase function +(T) .  = 0 I s  the 
l imiting amplitude reached when +(T)  was generated by a broad 
band gaussian noise source. The horizontal dashed l i ne  is the 
amplitude reached I n  the non-stochastic case * (T )  = 0. 

of 
Ph 

The bar a t  T 
Ph 
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fl = f,, = 1 .O, T = 2.0 
Ph 

- 
1 2 3 4 5 

B 

Figure 2. Bar graph sharing the limiting amplitudes of wL reached in  the 

time interval 0 5 T C 1000 as a function of the dimensionless 
frequency parameter R for a fixed period T 

as t i c  phase function $(T) .  

= 2 of the stoch- Ph 

-1g- 
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, 

fi= 5.0, f,, = 6.5 
Ip= 1 .o, Tph = 2.0 

3. Scatter diagram of the rawlam value of vJ resched la the tils 
period 0 s T c 100 for the CMC fl = 3.0, f,, = 6.5, 8 = 1.0 and 
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16 12 8 4 0 4 8 12 16 

i (d 

Figure 4 .  Trajectory of ~ ~ ( 7 )  i n  the case fl = 5.0, f , ,  = 0.0, B = 1.0. 
Note the higher density of t ra jec tor ies  near the values 

w, = 7, 10, 13. 
13.32, 16.47.. .. 
a period T The 

l imiting value for  the coherent wave + ( T )  = 0 was w , ~  = 7.2. 

The zeros of J (w ) are wi = 3.83, 7.02, 10.17, 
The integration period was 0 5 T S: 1000 using 

1 1. 

= 2.0 f o r  the random phase function + ( T ) .  
Ph 
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4~ 

3 

2 

1 

n 

b o  3 

- 1  

-2 

-2  

-4 I I I I I I 
-2 - 1  0 1 2 3 4 -3 

Figure 5 .  A typical t ra jectory of w L ( 7 )  for  an electron accelerated under 

the condition fl = f , ,  = 0.1, P = 1.0. 

norm1 t o  the plane of the figure. 
each c i r cu i t  of which corresponds t o  nearly At = 2n/(uc. 

"small" force cases (see Section I1 of t e x t )  exhibit such sp i ra l -  
l i k e  tra jcctoriec;. 

The magnetic f i e l d  i s  

Note the  non-uniform sp i ra l ,  
All 
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B= 2.0 

I 1 1 I 1 I I 1 I I 1 I 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 

T = o  t 
C 

Figure 6. Nonlinear growth curves of normalized transverse velocity 

1.9, 2.0, 2.1 and 3.0.  
~ ~ ( 7 )  under the conditions fL = f,, = 0.1, l e (  = 0.9, 1.0, 1.1, 

The cases B = + 1.0, + 2.0 "resonate". - - 
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4 

3 

n 
)r 

3 
W 

I 2  

1 

0 

I f,,=f1=0.05 I 

p= 3.0 p= 3.0 
I I I I I I I 1 1 1 

B= 1 . 1  

0 5 10 15 20 25 30 35 40 45 50 
T = O t  

C 

5 

Figure 7. Nonlinear growth curves of normalized transverse velocity 

w I ( 7 )  for the same values of 1 I as those in Fig. 6. 
fi = f,, = 0.05. 

Here 
Again, the cases B = + 1.0, + 2.0 "resonate". - - 
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